4006-01-9999
登錄

社區(qū)工作者

各地
招考

您當前位置:社區(qū)工作者考試頻道公務員考試網 > 國家公務員考試網 > 2019社區(qū)工作者數量關系排列排列組合答題技巧

2019社區(qū)工作者數量關系排列排列組合答題技巧

2019-10-03 10:26:00 社區(qū)工作者考試 http://m.yflching.cn/shehui/ 文章來源:華圖教育

  【導讀】華圖社區(qū)工作者考試頻道同步華圖教育發(fā)布:2019社區(qū)工作者數量關系排列排列組合答題技巧,華圖教育為大家整理了行測備考相關知識供廣大考生復習,更多備考技巧請持續(xù)關注華圖教育,詳細信息請閱讀下文!

今天我們這篇文章主要來講排列組合的解題法寶之一的插板法,下邊我們一起來看一下什么是插板法。

基本題型

基本題型為:n個相同元素,不同個m組,每組至少有一個元素;則只需在 n 個元素的n-1 個間隙中放置 m-1 塊隔板把它隔成 m 份,求共有多少種不同方法?

其解題思路為:將 n 個相同的元素排成一行, n 個元素之間出現了( n-1 )個空檔,現在我們用( m-1 )個 “檔板 ”插入( n-1 )個空檔中,就把 n 個元素隔成有序的 m 份,每個組依次按組序號分到對應位置的幾個元素(可能是 1 個、2 個、 3 個、 4 個、 ….),這樣不同的插入辦法就對應著 n 個相同的元素分到 m 組的一種分法,這種借助于這樣的虛擬 “檔板 ”分配元素的方法稱之為插板法。

例題:共有 10 完全相同的球分到 7 個班里,每個班至少要分到一個球,問有幾種不同分法?

解析:我們可以將 10 個相同的球排成一行, 10 個球之間出現了 9 個空隙,現在我們用 6 個檔板 ”插入這 9個空隙中,就 “把 10 個球隔成有序的 7 份,每個班級依次按班級序號分到對應位置的幾個球(可能是 1 個、2 個、 3 個、 4 個),這樣,借助于虛擬 “檔板 ”就可以把 10 個球分到了 7 個班中。

基本題型的變形

(1)變形1:有 n 個相同的元素,要求分到 m 組中,問有多少種不同的分法?

解題思路:這種問題是允許有些組中分到的元素為 “0”,也就是組中可以為空的。對于這樣的題,我們就首先將每組都填上 1 個,這樣所要元素總數就 m 個,問題也就是轉變成將( n+m )個元素分到 m 組,并且每組至少分到一個的問題,也就可以用插板法來解決。

例題:有 8 個相同的球放到三個不同的盒子里,共有( )種不同方法 。

解答:題目允許盒子有空,則需要每個組添加 1 個,則球的總數為 8+3 ×1=11,此題就有 C(10 ,2) =45(種)分法了。

(2)變形2:有 n 個相同的元素,要求分到 m 組,要求各組中分到的元素至少某個確定值 S( s>1,且每組的 s值可以不同) ,問有多少種不同的分法?

解題思路: 這種問題是要求組中分到的元素不能少某個確定值 s,各組分到的不是至少為一個了。 對于這樣的題,我們就首先將各組都填滿,即各組就填上對應的確定值 s 那么多個,這樣就滿足了題目中要求的最起碼的條件,之后我們再分剩下的球。這樣這個問題就轉變?yōu)樯厦嫣岬降淖冃?的問題了,也就可以用插板法來解決。

例題:15 個相同的球放入編號為 1、2、 3 的盒子內,盒內球數不少于編號數,有幾種不同的放法?

解析:編號 1:至少 1 個,符合要求;

編號 2:至少 2 個:需預先添加 1 個球,則總數 -1 ;

編號 3:至少 3 個,需預先添加 2 個,才能滿足條件,后面添加一個,則總數 -2 ;

則球總數 15-1-2=12 個放進 3 個盒子里,所以 C(11,2)=55 (種)。

通過上面的例題,我們可以看到在排列組合題其實是有方法及步驟可循的,只要大家能夠牢記做題步驟即可快速作出答案。望大家能夠熟練掌握,在考場做到快速解題。

(編輯:admin)

官方圖書推薦

有報考疑惑?在線客服隨時解惑

公告啥時候出?

報考問題解惑?報考條件?

報考崗位解惑   怎么備考?

沖刺資料領?

立即咨詢
2023社區(qū)工作者公告預約
華圖社工公眾號:htszyf
想考上社工的人都關注了我們!
立即關注

10萬+
閱讀量
50w+
粉絲
1000+
點贊數